2011. november 6., vasárnap

Üzemanyag fogyasztás csökkentő Hogyan működik?


Hogyan működik?
1. Az alapelv
A vizet elektrolízis segítségével szétválasztjuk hidrogénre és oxigénre, majd azt a porlasztóban, injektorban levegővel hígítva elégetjük a hengerekben. Ennyi.
H2O(folyadék) => H2(gáz) + O2(gáz) => H2O(gőz)
Az elektrolízishez szükséges energiát az autóakkumulátorból vagy a generátorból vesszük. Ez az áram a vizet hidrogénre és oxigénre bontja. A keletkezett hidrogén-oxigéngázt a porlasztóban levegővel hígítjuk, vagy különböző befecskendezési módot alkalmazunk és a hengerekben ezt a hidrogén-levegő keveréket plusz némi vizet elégetjük.
A hidrogén és oxigén elégetésekor keletkező energia legalább egy nagyságrenddel meghaladja a víz lebontásához használt energiát. Mindez annak köszönhető, hogy a hidrogén és oxigén szétválasztásakor és újraegyesülésekor megcsapoljuk az étert vagy más néven a nullapont energiát, ez adja az energiatöbbletet.
2. A hidrogén felhasználása a belsőégésű motorokban
A világ autógyárai már régóta kísérleteznek ezzel és szép eredményeket értek el.
Az 1860-as és 1870-es években N. A. Otto, az Otto-motorok feltalálója, miközben a belsőégésű motorral kísérletezett, bizonyíthatóan szintetikus gázt használt üzemanyagként, melynek hidrogéntartalma meghaladta az 50 %-ot. Otto benzinnel is kísérletezett, de a használatát veszélyesnek találta, ezért visszatért a gázalapú üzemanyagokhoz. A porlasztó kifejlesztése azonban egy új korszak hajnalát jelentette, melyben a benzint már biztonságosan felhasználhatták a gyakorlatban. Ez a többi gáz használatát teljesen kiszorította.
Az utóbbi években a tisztább levegő elérése érdekében valamint az olajszármazékokból nyert üzemanyagtól való függőség megszüntetésére az emberek érdeklődése visszatért a hidrogén üzemanyagkénti hasznosítása felé.
3. A hidrogén égési tulajdonságai
A hidrogén üzemanyagként való alkalmazásánál a következő tulajdonságokat kell figyelembe vennünk:
A gyúlékonysága széles skálán mozog
Alacsony energia kell a meggyújtásához
Rövid távolság kell az eloltásához
Magas az öngyulladási hőmérséklete
Gyorsan terjed a lángja
Nagy a terjedési sebessége
Nagyon kicsi a sűrűsége
A gyúlékonysága széles skálán mozog
A hidrogén gyúlékonysága sokkal szélesebb tartományban mozog, mint az összes többi üzemanyagnak. Ez azt eredményezi, hogy a hidrogént az üzemanyag-levegő keverék arányának széles skáláján lehet elégetni a belsőégésű motorokban. Ez ahhoz a jelentős előnyhöz vezet, hogy nagyon sovány keveréknél is elégethető a hidrogén. A sovány keverék azt jelenti, hogy a hidrogén mennyisége az adott levegőmennyiséghez képest jóval kevesebb, mint amennyi elméletileg vagy kémiailag ideális lenne az elégetéséhez. Ezért olyan rendkívül könnyű beindítani a hidrogénmotorokat.
Általánosságban, sovány keverék használatakor az üzemanyag-megtakarítás nagyobb és az égés tökéletesebb. Ezen kívül az égés hőmérséklete is alacsonyabb, ezáltal csökkentve a szennyező anyagok, mint például a nitrogén-oxid mennyiségét a kipufogásnál. Ugyanakkor van egy bizonyos határa annak, hogy mennyire lehet sovány egy keverék, mivel a sovány keverék jelentősen lecsökkenti a motor teljesítményét a keverék térfogati hőmennyiség csökkenése miatt.
Alacsony energia kell a meggyújtásához
A hidrogénnek nagyon alacsony a gyulladási energiája. A hidrogén meggyújtásához szükséges energia egy teljes nagyságrenddel kisebb, mint ami a benzin meggyújtásához szükséges. Ez teszi lehetővé a hidrogénmotorokban a sovány keverék meggyújtását, ami azonnali indítást eredményez.
Az alacsony gyulladási energia sajnos azt is eredményezi, hogy a hengerekben lévő forró gázok és forró cseppek túl korai begyújtást és visszaégést eredményezhetnek. Ennek a megakadályozása a hidrogénüzemű motoroknál nagy kihívást jelent. A hidrogén széles skálán mozgó gyúlékonysága azt is jelenti, hogy szinte minden keverék begyulladhat a forró cseppektől.
Rövid távolság kell az eloltásához
A hidrogén eloltásához rövid távolság kell, kisebb, mint a benzinnél. Következésképpen a kipufogás előtti pillanatban a hidrogén lángnyelvei közelebb vannak a henger falához, mint bármelyik más üzemanyag esetében, így a hidrogént jóval nehezebb eloltani, mint a benzint. A kisebb oltási távolság növelheti a visszaégési hajlamot, mivel a hidrogén-levegő keverék hajlamosabb a közelebb lévő nyitott szelepen távozni, mint a hidrokarbon-levegő keverék.
Magas az öngyulladási hőmérséklete
A hidrogénnek viszonylag magas az öngyulladási hőmérséklete. Ez akkor válik fontossá, mikor a hidrogén-levegő keveréket összenyomjuk. A tény az, hogy az öngyulladási hőmérséklet fontos tényező annak meghatározásában, hogy milyen nyomásviszonyokat alkalmazhatunk agy adott motornál, mivel a nyomás során a hőmérséklet növekszik.
A hőmérsékletnek nem szabad meghaladnia a hidrogén öngyulladási hőmérsékletét, mert az korai begyulladást eredményezne. Ezért az abszolút véghőmérséklet (T2) korlátozza a nyomásarányt. A hidrogén magas öngyulladási sebessége nagyobb nyomásarányt tesz lehetővé a hidrogénmotorban, mint a hidrokarbon motorban. Ez a magasabb nyomásarány azért fontos, mert ez a rendszer hőhatásfokával áll kapcsolatban. Másrészről viszont a hidrogént nehéz begyújtani nyomásgyújtással vagy dízel üzemmódban, mivel az ilyen típusú begyújtáshoz szükséges hőmérséklet viszonylag magas.
Gyorsan terjed a lángja
A hidrogén lángja gyorsan terjed. Azonos feltételek mellett a hidrogénláng sebessége egy nagyságrenddel meghaladja a benzinlángét. Ez azt jelenti, hogy a hidrogénmotorok jobban meg tudják közelíteni a termodinamikailag ideális motorciklust. A soványabb keveréknél azonban a lángsebesség jelentősen lecsökken.
Nagy a terjedési sebessége
A hidrogénnek nagyon nagy a terjedési sebessége. Ez a képessége, hogy a levegőben könnyebben terjed, mint a benzin, két okból is előnyös. Először is, ez elősegíti a hidrogén egyenletesebb keveredését a levegővel. Másodszor, ha a hidrogéntartály valahol léket kap, a hidrogén gyorsan eloszlik. Ez megszünteti vagy legalábbis csökkenti a nem biztonságos körülményeket.
Nagyon kicsi a sűrűsége
A hidrogénnek nagyon kicsi a sűrűsége. Ez két problémához vezet a hidrogén belsőégésű motorokban történő használatánál. Először is, nagyon nagy méretű tartályra van szükség ahhoz, hogy elegendő mennyiségű hidrogénnel rendelkezzünk a jármű megfelelő használatához. Másodszor, ez a hidrogén-levegő keverék energiasűrűségét – következésképpen a teljesítményt – lecsökkenti.
4. Levegő – üzemanyag arány
A hidrogén és oxigén elméleti égését a következőképpen írhatjuk le:
2H2 + O2 = 2H2O
A teljes égéshez szükséges H2 mólban = 2 mól
A teljes égéshez szükséges O2 mólban = 1 mól
Mivel az égéshez a levegőt használjuk az oxigén helyett, a levegő nitrogéntartalmát is figyelembe kell vennünk a számításoknál:
A levegő N2 tartalma mólban = O2 mól * (79% N2 / 21% O2)
= 1 mól O2 * (79% N2 / 21% O2)
= 3.762 mól N2
A levegő mól száma = O2 mólban + N2 mólban
= 1 + 3.762
= 4.762 mól
Az O2 súlya = 1 mól O2 * 32 g/mól
= 32 g
Az N2 súlya = 3.762 mól N2 * 28 g/mól
= 105.33 g
A levegő súlya = az O2 súlya + az N2 súlya
= 32g + 105.33 g
= 137.33 g
A H2 súlya = 2 mól H2 * 2 g/mól
= 4 g
A levegő és hidrogén stoichometrikus aránya (L/H):
(L/H) tömegben számolva = levegő tömege / hidrogén tömege
= 137.33 g / 4 g
= 34.33:1
(L/H) térfogatban számolva = levegő térfogata / hidrogén térfogata
= 4.762 mól / 2 mól
= 2.4:1
Stoichometrikus keverék esetén a hidrogén égéstérben elfoglalt aránya %-osan kifejezve:
H2 %-ban = H2 térfogata / teljes térfogat
= H2 térfogata / (levegő + H2 térfogata)
= 2 / (4.762 + 2)
= 29.6 %
Mint ezek a számítások is mutatják, a hidrogén elégetésének legmegfelelőbb L/H aránya stoichometrikusan vagy kémiailag kifejezve körülbelül 34:1. Ez azt jelenti, hogy a teljes égés érdekében minden egyes font hidrogénhez 34 font levegő szükséges. Ez jóval magasabb, mint a benzinnél szükséges 14.7:1 arány.
Mivel a hidrogén gáznemű üzemanyag, ezért az égéstérben jobban szétterjed, mint a folyékony üzemanyagok, következésképpen a levegő az égéstér kevesebb részét tudja elfoglalni. Stoichometrikus körülmények között a hidrogén az égéstér 30 %-át foglalja el, míg a benzin csak a 2 %-át. A hidrogén motorba juttatásától függően a teljesítmény a benzinmotorokhoz képest 85 % (egyszerű bevezetés) és 120 % (nagynyomású befecskendezés) között változik.
Mivel a hidrogén gyúlékonysága széles skálán mozog, a hidrogénmotorok L/H aránya 34:1 (stoichometrikus) és 180:1 között változhat.
5. Szennyezőanyag kibocsátás
A hidrogén oxigénnel történő elégetése csak vizet eredményez:
2H2 + O2 = 2H2O
A hidrogén levegővel való elégetése azonban nitrogén-oxidot (NOx) eredményez:
H2 + O2 + N2 = H2O + N2 + NOx
A nitrogén-oxid a magas hőmérséklet eredménye. Ez a magas hőmérséklet a levegőben lévő nitrogén egy részének az oxigénnel való egyesülését eredményezi. A képződött NOx mennyisége a következő tényezőktől függ:
A levegő/üzemanyag arányától
A motor nyomásarányától
A motor sebességétől
A gyújtás időzítésétől
Az esetlegesen alkalmazott hőhígítástól
A nitrogén-oxidon kívül az égéstérbe beszivárgott olaj elégésének következtében szénmonoxid és széndioxid is keletkezhet a kipufogógázban.
6. Teljesítmény
A hidrogénmotor elméleti maximális teljesítménye a levegő/üzemanyag aránytól és az üzemanyag-befecskendezés módjától függ.
A stoichometrikus levegő/hidrogén arány 34:1. Ennél a L/H aránynál a hidrogén az égéstér 29 %-át tölti ki, a maradék 71 %-ot pedig a levegő. Ez azt eredményezi, hogy a keverék energiatartalma kevesebb lesz, mint a benzinkeverék esetében (mivel a benzin folyékony, az égéstérnek csak nagyon kis részét foglalja el, ami több levegő beengedését teszi lehetővé).
Mivel mind a porlasztós, mind pedig a kapuzott befecskendezési módnál az üzemanyag és a levegő a motorba lépés előtt már elkeveredett, a rendszer elméleti teljesítményhatára a benzinmotornak csak a 85 %-a. A közvetlen-befecskendezésű rendszernél, ahol az üzemanyag a levegővel az égéstérben keveredik el zárt szelepek mellett (és így az égéstérben 100 % a levegőtartalom), a rendszer maximális teljesítménye 15 %-kal meghaladja a benzinmotorét.
Következésképpen az üzemanyag adagolásától függően a hidrogénmotor teljesítménye 15 %-kal meghaladhatja vagy 15 %-kal kevesebb lehet, mint a benzinmotoré. A stoichometrikus levegő/hidrogén arány mellett azonban az égés hőmérséklete nagyon magas, ami nagy mennyiségű szennyező nitrogén-oxid (NOx) termelést eredményez. Mivel a hidrogénmotor használatának egyik célja a kipufogógázok légszennyezésének csökkentése, ezért a hidrogénmotorokat úgy tervezik, hogy ne a stoiciometrikus levegő/hidrogén aránnyal működjenek.
A Las Vegasi Nevada egyetemen folytatott kísérletek alapján azonban már a 700-1000 °C-os hőmérséklet tartományban megfigyelhető a víz szétválása hidrogénre és oxigénre, ez a spontán szétválás. Van egy nagyon fontos tulajdonsága ennek a spontán szétválásnak, mégpedig az, hogy kevesebb hőenergiát kell közölni a rendszerrel, mint amennyit visszakapunk, mikor a H2 és O2 molekulák ismét vízmolekulákká válnak
Amikor ilyen magas hőmérsékleten folyik az elektrolízis, akkor a szétválasztott hidrogén és oxigén atomok szinte azonnal újraegyesülnek vízzé. A cél az, hogy az “elektrolizáló” egyúttal a termelt hidrogén felhasználási helye is lehessen, így ezt a 2,5-szeres hatásfokot még a sokszorosára növelhetjük!
Vizsgáljuk meg először az elektrolízis folyamatát. A vízzel, azaz H2O molekulákkal villamos energiát közölve azok lebomlanak hidrogénre és oxigénre, majd H2 és O2 molekulákat alkotva újra stabil állapotba kerülnek. Ezen reakció során a hagyományos tudományos álláspont szerint a reakcióban résztvevő atomok energiával töltődnek fel, méghozzá az általunk befektetett energiával, ami abban nyilvánul meg, hogy az elektronjaik magasabb energiaszintű állapotba ugranak. A hengerekbe kerülve ezek a gázok egy kis energia (szikra) segítségével újból egy alacsonyabb energiaszintű állapotba jutnak, s közben az energiafelesleget hő és fény formájában leadják.
7. A autó hidrogénszükséglete
Az elv a következő: A szükséges hidrogén túlnyomó részét gáz formájában de egy részét víz formájában juttatjuk a hengerekbe. Magas hőmérsékleten a víz spontán módon lebomlik hidrogénra és oxigénra. A teendőnk tehát csak az, hogy a szükséges mennyiségű vizet bejuttassuk az égéstérbe a levegő/hidrogén keverékkel együtt. Ott meggyújtjuk a hidrogéngázt, s az így keletkezett hő hatására lebomlik a víz, majd újraegyesülve felszabadítja a számunkra szükséges energiát.
Az általunk előállított készülék a benzin-levegő keverék mellé hidrogént, oxigént és bizonyos mennyiségű vizet is bejuttat az égéstérbe, ahol az a magas, 2500 °C-os hőmérséklet következtében lebomlik hidrogénre és oxigénre, majd újraegyesül vízzé. Ez a szétválási és újraegyesülési folyamat egyetlen munkavégzési ütemben többször is lejátszódik. A készüléket sok különböző típusú gépjárműben alkalmazzák nagy sikerrel, az üzemanyag-megtakarítás 25-35 %-os.
Az égéstérben uralkodó 2500 °C-os hőmérsékleten a víz lebomlik hidrogénre és oxigénre, de mivel a hidrogén öngyulladási hőmérséklete 575 °C, így az újból vízzé “ég”, mely víz aztán ismét lebomlik. Ez a körfolyamat addig folytatódik, amíg a dugattyú lefelé mozgásának következtében meg nem növekszik az égéstér térfogata, ezáltal csökkentve a hőmérsékletet, valamint a kipufogószelep megnyitásával a vízgőz ki nem jut a szabadba.
Az elektrolízis módja határozza meg a vízből kinyert hidrogén mennyiségét, mely számunkra nagyon fontos paraméter. Ahhoz, hogy elegendő hidrogént tudjunk kapni a vízből, tudnunk kell, hogyan állíthatunk elő maximális hidrogénmennyiséget minimális energia-befektetéssel.
A villamos teret pl. úgy hozhatjuk létre, hogy a vízbe két elektródalemezt helyezünk, melyekre adott villamos feszültséget kapcsolunk.
Az elektródák közötti teret dipólusos vízmolekulák töltik ki, ugyanazon feszültség hatására nagyobb mennyiségű töltés halmozódik fel az elektródákon. Ennek oka az, hogy a vízben polarizáció megy végbe, amely során a víznek az elektródákkal szomszédos felületén megjelenő töltések az elektródákon levő töltések által létrehozott villamos térrel ellentétes irányba mutató teret hoznak létre. A polarizációs töltések tehát lerontják a “kondenzátor” belsejében a villamos teret. A feszültség azonban állandó értékű és a villamos térerősség vonal menti integráljával egyenlő.
A mi célunk viszont az, hogy a vízmolekulákat ne csak polarizáljuk, hanem szét is szakítsuk alkotórészeire. Ehhez az egyik megoldás az, hogy addig növeljük a térerőt, vagyis az elektródákra kapcsolt feszültséget, míg a molekulák szét nem szakadnak az alkotórészeikre, hidrogén és oxigén atomokra. Mivel a hidrogén kötés a kémiai kötések közül a második legerősebb kötés, ezért igen nagy feszültségre van szükség annak szétszakításához.
Ha nem akarunk nagy feszültséget használni a hidrogénkötés szétszakítására, akkor olyan fémet kell a vízbe juttatnunk, amelynek a standard elektródpotenciálja negatív.
Vízből a hidrogént csak azok a fémek képesek redukálni (elektronleadásra késztetni), amelyeknek a standardpotenciálja negatív, vagyis az alkáli- és az alkáliföldfémek, valamint az alumínium. Gyakorlatilag azonban, sem az alumínium sem a magnézium nem reagál közönséges körülmények között a vízzel, mert a felületüket összefüggő, védő oxidréteg borítja, mely jelentős aktiválási gátat jelent.
Az alkálifémek és az alkáliföldfémek többségének oxidjai, hidroxidjai vízoldékonyak, ezért a reakció végbemegy. A vízbontásnál az egyik leggyakrabban használt fém a kálium, melyet kálium-hidroxid (KOH) alakjában adunk a vízhez, ahol az feloldódik a következő reakció szerint:
KOH + H2O => K+ + OH- + H2O
A pozitív töltésű kálium ion és a negatív töltésű hidroxid ion a nagyon jól szigetelő vizet vezetővé teszi.
Az oldatba elektródákat vezetve és azokra feszültséget kapcsolva az elektródák között létrehozzuk a fentebb már leírt villamos erőteret, aminek hatására a vízmolekulák polarizálódnak. De mivel az oldat már ionokat is tartalmaz, ezért redoxi reakciók is lejátszódnak.
8. Bomlási feszültség
A bomlási feszültség elméletileg 1,23 V, ezalatt nem indul be az elektrolízis folyamata. A gyakorlatban azonban ez a minimális feszültség magasabb. A gyakorlati és elméleti feszültségszintek közötti különbséget túlfeszültségnek nevezzük, melynek értéke az elektróda anyagától, az elektrolittól és a hőmérséklettől függ.
A redoxi reakció beindulásához a gyakorlatban minimum 1,47 V szükséges 25 °C-on. A hőmérséklet változásával azonban ez a feszültség arányosan változik. 60 °C-on ez a feszültség leesik 1,23 V-ra. Ennek a két pontnak az ismeretében felírhatunk egy egyenletet, mely meghatározza a bomlási feszültség értékét a hőmérséklet függvényében.
Az elektrolízis hatásfoka sok tényezőtől függ, például az elektrolit anyagától és koncentrációjától, az alkalmazott elektródák anyagától, méretétől és formájától, az elektrolizáló tartály méretétől és formájától, az elektrolízishez használt áram nagyságától, hullámformájától és frekvenciájától (ha nem egyenáramot használunk), az elektrolízis hőmérsékletétől stb.
9. Browngáz
A Browngáz a di-atomi és mono-atomi hidrogén és oxigéngázok keveréke.
A Browngáz legegyszerűbb előállítási módja az elektrolízis, mely az elektromos áram segítségével a vizet hidrogénre és oxigénre bontja. A lebontás pillanatában a hidrogén és oxigén úgynevezett mono-atomi állapotban van, azaz nem kapcsolódnak semmilyen más atomhoz, csak önmagukban vannak, mint H és O.
A hagyományos elektrolizálók arra ösztökélik ezeket a mono-atomi hidrogén- és oxigénatomokat, hogy azok di-atomi állapotba menjenek át. A di-atomi állapot azt jelenti, hogy a hidrogénatomok H2 molekulákat, az oxigénatomok pedig O2 molekulákat alkotnak. A di-atomi állapot egy alacsonyabb energiaszintű állapot, s az energiakülönbség hő formájában jelentkezik, mely az elektrolizálót melegíti, s amely így nem elérhető a további felhasználás során.
De mi történik akkor, ha a H és O atomok jelentős része nem alakít ki di-atomi molekulakötéseket. A hagyományos elektrolízis endotermikus (hőelnyelő) folyamat. De ha csak kevés di-atomi molekula keletkezik, akkor az elektrolizáló nem melegszik fel, mivel nincs exotermikus (hőkibocsátó) folyamat, mely a buborékok vízre gyakorolt hatásakor jön létre. Ezen kívül az elektrolízis során keletkezett gáz mennyisége is jelentősen megnövekszik, mivel a mono-atomi móltömeg kétszerese a di-atomi móltömegnek ugyanakkora súlyú víztömeg elektrolizálása során.
Mi történik ezen mon-atomi gázok elégetése során? Mikor csak H és O ég el, akkor a láng sokkal hidegebb, mivel a lángnak nem kell energiát közölnie a H2 és O2 molekulák szétválasztására. Ha csak a H és O atomok vannak jelen az égés során, akkor csak annyi történik, hogy azok a gázállapotból az 1860-szor sűrűbb folyékony halmazállapotba alakulnak át, vagyis vízzé, s ez csak kevés hőtermeléssel jár. Ez a folyamat viszont vákuumot hoz létre robbanásszerű összeroppanást idézve elő. És ha a H és O atomok egyből vizet formálnak, akkor (4 mól hidrogén és 2 mól oxigén esetén) 442.4 Kcal energiát kapunk, ellentétben a 115.7 Kcal-val, amit 2H2:O2 esetén kapnánk.
A mono-atomi hidrogénből (H) és mono-atomi oxigénből (O) álló Browngáz lángjával nem kell energiát közölnünk, mivel az atomok már eleve a legegyszerűbb és legmagasabb energiaszintű állapotukban vannak. Ez azt jelenti, hogy a “tökéletes” Browngáz 3.8-szer több hőenergiával rendelkezik, mint a “közönséges” H2 és O2 gázok (442.4 Kcal / 115.7 Kcal). Így “plazma” típusú hőmérsékleteket és hatásokat érhetünk el, mivel a potenciális atomi energia jelen van, még ha nem is jelentkezik hő formájában.
A cél az, hogy a lehető legkisebb feszültségen és a lehető legkisebb áram felhasználásával tudjuk előállítani a szükséges mennyiségű hidrogéngázt. A gyakorlatban használt elektrolizálók hatásfoka 50-71% között változik.
10.Korróziógátlás
A benzin olyan adalékanyagokat tartalmaz, ami lassítja az égést valamint keni a motort és a kipufogórendszert. A hidrogéngázban nincsenek ilyen adalékanyagok. Amikor elégetjük a hidrogént, vizet kapunk, forró vízpárát, ami a rendszer rozsdásodásához vezet. De ne felejtsük el hogy ugyanazok a gépjárművek (pl Toyota Hyace) ugyanúgy üzemelnek egy sivatagi környezetbe ahol a levegő páratartalma 15-20% és egy trópusi párás környezetben ahol a levegő páratartalma 80-90%. Nincs lényeges különbség a kipufogó rendszer rozsdásodásának a két lényegesen eltérő környezetben ha a gépkocsit nap mint nap használják. Ha áll akkor rozsdásodik. A legelső dolog, ami elrozsdásodik, az a kipufogórendszer és benne a hangtompító, a következők a szelepek majd végül a hengerfej következik a dugattyúval és a dugattyúgyűrűkkel. Azokat az alkatrészeket, melyek rozsdásodásnak vannak kitéve, le kell cserélnünk rozsdamentes acélból készültre vagy kerámiával kell azokat bevonnunk.
Rozsdamentes acél
A kipufogórendszert nem nehéz rozsdamentes acélcsőből elkészíteni, a szén-monoxid szűrő pedig feleslegessé válik, hiszen a hidrogén égésterméke környezetbarát víz és oxigén. (Megfelelő L/H arány mellett az NOx termelés elhanyagolható.)
A szelepeket sem nehéz rozsdamentes acélból készültre lecserélni.
A gondot a hengerfej, a dugattyú és a dugattyúgyűrű lecserélése jelenthetné, de ezek az alkatrészek önmaguktól megtisztulnak. Ez azonban csak akkor igaz, ha az autódat naponta használod! Ha hosszabb ideig (pár napig) áll az autód, ezek az alkatrészek beragadhatnak. Ha tudod, hogy nem fogod használni az autódat több mint egy napig, akkor az utolsó kilométereken ki kell kapcsolni a HHO gázrendszert.
Kerámia
Ha nem akarja lecserélni a rozsdásodásnak kitett alkatrészeket, akkor azok vízzel érintkező felületét kerámiával kell bevonni. Carl Cella a vízautójánál “heanium” spray-t használt. A heanium alumínium-oxidot, titán-oxidot vagy cirkónium-oxidot tartalmaz, attól függően, hogy mi ellen szeretnénk elsősorban védeni a bevont felületet: hő, korrózió és/vagy kopás ellen.
11.Oxigénszonda
Ha az autóján használni akarja a hidrogénmeghajtást, akkor egy nem várt akadályba fog ütközni. Az autó kipufogórendszerében elhelyezett oxigénszonda (lambda szonda) olyan jeleket ad a fedélzeti számítógépnek, ami jelentősen megváltoztatja a levegő/üzemanyag arányt. Ha kiköti a szondát, akkor a motor ugyan beindult, de egy rövid idő után mindig leáll.
A modern autók kipufogórendszere oxigénszondával van ellátva, mely megmondja a fedélzeti számítógépnek, hogy mennyi üzemanyagot kell adagolnia minden egyes ciklusban. Amikor az égés folyamata javul az üzemanyag tökéletesebb gázosításakor, akkor a kipufogógázok oxigéntartalma megnövekszik. Ez ellentmondásosnak tűnik, hisz azt várhatnánk, hogy a tökéletes égés több oxigént fogyaszt. A valóságban azonban ennek épp az ellenkezője történik, azaz kevesebb nitrogén-oxid keletkezik, ami több szabad oxigént eredményez.
Hogyan működik az oxigénszonda
Közel az összes szenzor cirkónium-oxidból készül. Egy kerámiagömb van elhelyezve a forró kipufogó gázban, mely homorú és a belső felülete a kipufogó csövön kívül lévő atmoszférával érintkezik. Mind a két felület platinával van bevonva. A negatív töltésű oxigénatomok a platina felületéhez kapcsolódnak, ezáltal építve fel negatív töltést a teljes felületen. Amikor a forró kipufogó gázok nem, vagy csak kevés szabad oxigént tartalmaznak, akkor a gömb felületén a töltés kisebb lesz, mint a másik felületen. Ez feszültségkülönbséget eredményez, melyet a felületekhez erősített elektródákon mérhetünk. Az atmoszférával érintkező oldal az autó testéhez van kapcsolva, így a másik oldal automatikusan pozitív töltésű lesz, mivel ott kevesebb negatív töltésű oxigénatom van. Ez a szenzor úgy működik, mint egy elem, de csak akkor, mikor már felmelegedett néhány száz Celsius fokra. A kimeneti feszültség tehát a kipufogógáz oxigéntartalmától függ.

1.ábra. A szenzor jelének görbéje
Mint az 1.ábrán látható, a szenzor görbéje nem lineáris és hirtelen változik a stoichometrikus értéknél, vagyis amikor a levegő/benzin arány eléri a tökéletes égéshez szükséges 14,7 : 1 arányt. Sovány keveréknél a kimeneti feszültség közel nulla, míg dús keveréknél 1 volt körüli értéket produkál.
A középponton a levegő/benzin arány nagyon kis mértékű változása nagy feszültségváltozást idéz elő a szenzor kimenetén. Mivel a számítógép nem tudja a tökéletes arányt beállítani, így csak az átlagos értéket veszi figyelembe. A szenzor kimenete váltakozni fog a két véglet között. Ennek a váltakozásnak a sebessége attól függ, hogy a szenzor és a számítógép milyen gyorsan tudnak reagálni a változásokra. A tipikus arány másodpercenként 1 és 10 között változik.
A számítógép nyílt illetve zárt hurkú üzemmódban dolgozhat. A nyílt hurkú üzemmódban az oxigénszenzort figyelmen kívül hagyja, csak a többi szenzor (gázpedál pozíciója, levegőfolyam aránya, levegő hőmérséklete, motor sebessége stb.) alapján számolja ki a számítógép a levegő/benzin arányt. Akkor használja a számítógép a nyílt hurkú üzemmódot, mikor “gyanítja”, hogy az oxigénszenzor nem működik. Emlékezzünk arra, hogy a szenzor forró kell legyen, ezért a számítógép az indulás után vár egy darabig, míg azt nem érzékeli, hogy az már jól működik. Ekkor zárt hurkú üzemmódba kapcsol, ahol az oxigénszenzor jelét veszi elsősorban figyelembe a számításoknál, míg a többi szenzor értéke csak kis mértékben van hatással az eredményre. Néhány számítógép arra is képes, hogy menet közben tanuljon, így idővel jóval pontosabb levegő/benzin arányt képes beállítani.
Van még egy alkalom, mikor az oxigénszenzort figyelmen kívül hagyja a számítógép. Hirtelen gyorsításnál, mikor a gázpedál jó háromnegyed részben megnyitja a szelepeket a keverék feldúsul, amikor pedig nagy sebességről lassítunk, akkor a keverék szegényebb lesz.
Központi befecskendezőnél a fordulatszám a fő információ, a többi szenzornak a jele csak un. korrekciós jel. Szelektív befecskendezés esetén a légelnyerés mérő adja az alapjelet, a többi csak korrigál. A légelnyerés mérőt egy helyen légtömegmérőnek hívják, ez az elnevezés azonban csak részben igaz. A torló csappantyús szerkezetek légtérfogatot mérnek, a motort a 14,6 liter levegő – 1 liter benzin viszonyra állítják be. A hőhuzalos, hőfilmes mérőszerkezetek viszont tömeget mérnek: 14,6 kg levegő – 1 kg benzin. Mindjárt másképp fest a dolog, mert van különbség. Persze ezek csak apró részletek, ettől még mehet az autó. A normális viszony tömegben van kifejezve.
A fedélzeti számítógép egy periodikusan változó jelet vár, melynek értéke megközelítőleg nulla és plusz egy volt között váltakozik. Ennek hatására a keverék arányát úgy módosítja, hogy a szondán mérhető jel átlaga 0,5 V körül legyen.
A szenzor jele nem négyszög alakú, hanem inkább egy elsimított háromszöghöz hasonlítható. A számítógépnek nem fontos a pontos jelalak, az csak az átlagfeszültséget igyekszik tartani.
Az elektromos keverékvezérlő az oxigénszenzor kimenete és a fedélzeti számítógép bemenete között helyezkedik el.
Ez a készülék négyszögjeleket állít elő, de ami még fontosabb, az az, hogy a feszültség határértéke kisebb, mint 0,5 V. Mikor a szenzor kimenete a küszöbérték felett van (mely elég alacsony értékre, mondjuk 0,1 V-ra lett beállítva), akkor az eszköz magas jelet küld a számítógépnek. Amikor pedig a szenzor jele a küszöbérték alá esik, akkor az eszköz alacsony jelet küld a számítógépnek. A számítógép tehát ennek megfelelően állítja a keverék arányát, de most már a 0,5 V-os küszöbérték helyett 0,1 V-os szenzorjelet használ.
A kompenzátort az alábbi ábrának megfelelően kell bekötni.

A kompenzátort a gépkocsi gyújtáskapcsolója által bekapcsolt 12V tápfeszültségről kell üzemeltetni.
A lambda szonda testvezetékét nem kell megszakítani, meg kell szakítani viszont a jelvezetéket és két gyorscsatlakozóval csatlakozunk a kompenzátor Lsz(lambda szonda) illetve a Pc (számítógép) csatlakozókra. Hogyan azonosítjuk a jelvezetéket?. Ha megtaláljuk a szonda vezetékén mindig van egy csatlakozó, ezen keresztül csatlakozik a számítógéphez. Ezt széthúzzuk, így mérni lehet az ellenállást a szonda és számítógép felőli oldalon. A két fűtő vezeték általában azonos színű ezek ellenállása a szonda felőli oldalon 6-17ohm közötti értékeket mutat. A számítógép felőli oldalon az a vezeték aminek a legnagyobb az ellenállása a gépkocsi testhez(-) viszonyítva az a jelvezeték.
Beállítás, üzemeltetés
Hideg motorral való induláskor a kompenzátor kapcsolója kikapcsolt állapotban kell legyen (balra állítva a csatlakozó felület felé és a működést jelző LED-ek közül a sárga világit). Amíg a szívató működik nincs értelme a kompenzálásnak. Amikor a szívató kikapcsolt (4-5perc után) be kell kapcsolni a kompenzátort, a kapcsoló jobbra fordításával (a potméter irányába), ekkor a zöld működést jelző LED kigyullad. Meleg motornál való indításnál a kompenzátort is be kel kapcsolni
A feszültség kijelző LED-ek a lambda szonda + a kompenzátor feszültségszintjeit jelzik ki. A beállító potenciométerrel úgy kell beállítani a kimenő feszültséget hogy 2000-es fordulaton a második harmadik zöld LED is világítson. Nagyobb fordulaton nem gond ha a az utolsó csoportban levő piros LED-ek közül 1-2 kigyullad (eléri a feszültség a 0,8-0,9V értéket).
Az értékek folyamatosan változnak, pulzálnak, ez a természetes, a számítógép ezt ismeri el mintavételezésnek.
Ha egyszer beállította többet nem kell ezzel bajlódni. Jó ha mégis a vezető látóterében van mert ha valami gond van a készülékkel vagy a lambda szondával akkor a kijelzésből látható.
12. MAP / MAF szenzor korrekció
A MAP/ MAF szenzor feladata hogy a beszívott levegőmennyiségről pontos adatokat adjon a gépkocsi számítógépének (ECU ) ami alapján ez az optimális üzemanyag mennyiséget fecskendezi be az égéstérbe. A régebbi gépjárművek 1990-1996 közöttiek MAP (Manifold Absolute Pressure) szenzort ami egy légnyomásmérő volt ami alapján az egységnyi idő alatti légtömeget kiszámította a számítógép és ehhez igazította az üzemanyag mennyiséget. Későbbiekben bonyolódott a rendszer és megjelent a MAF (Mass Air Flow) ami több érzékelő (a szállított levegő mennyiségét, nyomását, áramlási sebességét és hőmérsékletét) együttes mérését viszi be a számítógépbe.
A mérés 0-4,5V közötti jelszinteket jelent. Minél magasabb a jel feszültsége annál nagyobb a szállított levegő mennyisége, így nagyobb a hozzáadott üzemanyag mennyisége is.
Ha HHO generátort használunk az üzemanyag pótlására, akkor a hidrogén elégetésével plusz energiát adunk a motornak, így kevesebb üzemanyagra van szükség ugyanolyan paraméterekkel való haladáshoz. Ezért csökkenteni kell a MAP/MAF szenzor által kibocsátott jel szintet mindaddig, amíg a motor még megfelelő paraméterekkel működik, de jóval kevesebb üzemanyagot fogyaszt. A korrekciós készülék potenciométerének jobbra való elforgatásával csökkentjük a kimeneti jelszintet így arra késztetjük a számítógépet, hogy mind szegényebb keveréket készítsen. De addig, amíg a hidrogén energiája helyettesíti a kevesebb üzemanyagot, a motor megfelelően fog működni. Be kell állítani azt a megfelelő jelszintet, ami még a minimális fogyasztásnál jól működteti a motort.
A korrekciós készüléket az alábbi ábrának megfelelően kell bekötni.

A MAP/MAF szonda jelvezetékét meg kell szakítani, és a rajznak megfelelően be kell kötni a korrekciós készüléket, a megfelelő színű kábeleket használva.
Hogyan azonosítjuk a jelvezetéket? A MAP/MAF szenzor a levegőszűrő után, közvetlenül a vastag levegő tömlőn helyezkedik el. Az alábbi rajzon látható milyen lehetséges kivezetések találhatók egyes MAP/MAF szenzorokon.

A MAP szenzornál be kell kapcsolni a gyújtást de ne indítsuk el a motort és le kell húzni a csatlakozót. A szenzor oldalán meg kel mérni a testhez viszonyítva az érintkezők feszültségét. Kel egy állandó +5V tápfeszültséget kapjunk, kell egy 0V feszültséget-ez a test (-) és kel egy 0-4,5V váltakozó jelet kapjunk, ez a jel(J) ezt kell elvágni és ide becsatlakoztatni a korrekciós készüléket.
A MAF szenzor jelvezetékét megtalálni már bonyolultabb feladat. Itt 5-6 vezeték is lehet. Mindenképpen, be kell indítani a motort és mérőműszerrel a kábelek szigetelését megsértve, a testhez viszonyítva feszültségeket mérve, megtaláljuk a jelvezetéket, amit el kel vágni és be kel csatlakoztatni a korrekciós készüléket. Itt +5V tápfeszültséget, +12V tápfeszültséget, (-)testet (0V), és egy 0-4,5V közötti váltakozó jelet kapunk ez a jelvezeték (J).
Beállítás, üzemeltetés
A készüléket be kel vinni az utastérbe, hogy menet közben állítani tudjuk. Ha városi forgalomba közlekedünk, akkor a kapcsolót balra kapcsoljuk és a bal potenciométerrel jobbra forgatva, elszegényítjük a keveréket, addig amíg, még megfelelően működik a motor. Országúti forgalomnál jobbra kapcsolunk és a jobboldali potenciométerrel, a még megfelelően szegény keverékre állítjuk be a készüléket. Ezután már nem kel már többet állítani, csak hogy ha észre nem vesszük, hogy rángatózva működik a motor (túl szegény a keverék) bizonyos körülmények között (pl. meredek hegymenet).
13. HHO POWER 3000 üzemanyag csökkentő egységcsomag


Esetünkben az elektrolízis segítségével a vizet szétbontjuk hidrogén és oxigén keverékére (HHO vagy Brown gáz, más néven durranó gáz), majd ezt szívómotoroknál túltöltés nélkül tiszta szívás elven a motorba vezetjük a szívórendszeren keresztül.
Turbó vagy más feltöltésű kompresszoros motorok esetén a gázt a feltöltő levegővel együtt a kis nyomású levegő szakaszon (légszűrő ház), kiegészítő légpumpa segítségével juttatjuk az égéstérbe.
A leírt folyamatot HHO generátorral idézzük elő, mely áll egy un. száraz cellás (dry cell) generátorból, ami tömlőkön keresztül össze van kötve egy elektrolit-tartállyal aminek az alsó részén egy folyadékkivezető csonk és egy gáz bevezető csonk van. A tartály a tetején egy betöltő nyíláson tudjuk feltölteni elektrolittal, vagy pótolni desztillált vízzel. A tartály felső részén egy gázelvezető csonk van, melyen keresztül a hidrogén és oxigén gázkeverék vízpárával együtt távozik egy buborékoztató edénybe ahol az elektrolitot tartalmazó pára a vízben lecsapódik, de távozik a tiszta HHO gáz a motortérbe a levegőbeszívó rendszeren keresztül. A buborékoztatónak az a szerepe hogy kimossa az KOH-t tartalmazó vízpárát a HHO gázból és egyben védje a rendszert az esetleges visszaégéstől. Az elektrolit 4,5% KOH és desztillált víz keverék.

A gáztermelés élénk hőtermeléssel is jár, ha egyenárammal táplálnánk a generátort, az áramfelvétel az elektrolit hőmérsékletének emelkedésével folyamatosan emelkedne. Ha azonban a generátor celláin átfolyó áram nagyságát szabályozzuk, úgy hogy a jelalakját pulzálóvá tesszük, aminek az amplitúdóját, a frekvenciáját és a kitöltési tényezőjét változtatjuk annak érdekében, hogy generátor hatásfokát jelentősen növeljük és biztonságossá tesszük. A változtatható frekvenciájú és kitöltési tényezőjű négyszögjel generátort amellyel a HHO generátor száraz cellát tápláljuk PWM-nek (pulse wave modulator) hívják Ez a készülék a gépkocsi generátor által adott 13.8V egyenfeszültséggel működik, 40A áramerősséget biztosít 160Hz-40KHz frekvenciájú impulzusokkal amelynek a kitöltési tényezőjét 0-100% között lehet változtatni. A PWM áramkorlátozást is tartalmaz, ami a kitöltési tényező változtatásával nem engedi hogy nagyobb áramot fogyasszon a generátor mint ami be van állítva (pl.40A). Az elektronikus gázpedállal rendelkező gépkocsiknál lehetőség van a PWM vezérlésére, így a gázpedál változtatásával arányosan változik a termelt gáz mennyisége is.

Az alap készüléknél a HHO generátor 40A áramfelvételnél 3l/perc HHO gázt termel jelentős melegedés nélkül. Ez a készülék egy 3000-3500cm3 gépkocsiba váló beszerelésre készült.
Ha egy 2000-2500cm3 gépkocsiba akarjuk használni, akkor az áramkorlátozást 30A kell állítani és így 2-2,5l/p HHO gázt állít elő, ami megfelelő ennek a gépjármű típusnak
Ezt az egységcsomagot HHOPOWER2000-nek nevezzük.
A készülék tartalmaz még egy 50A biztosítékot és egy 50-60A relét is amin keresztül beköthető a gépjárműbe. A relé vezérlő vezetékét a gépjármű gyújtáskapcsolójára kell kötni. Így csak akkor működik a készülék, ha a motor jár.
Ennek főleg hidegebb időben fogjuk hasznát látni, valamint, ha feledékenyek lennénk. Parkoló autóban vígan buborékoló száraz cellánk, kb 10 perc alatt kiüti az akkut.
Vízutántöltés kb. 1 liter/1000 km. Csak desztillált víz!!! Az elektrolitban lévő kálium nem tűnik el!
erre gondoltál?